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Abstract— In this paper we investigate network design
for a wireless service provider using two orthogonal tech-
nologies: a WAN technology with uniform spatial coverage
and set of LAN access points each with limited coverage.
We assume that the system is designed so that users
(or their agents) independently and greedily select among
the two options based on maximizing a specified utility
function which may be a function of the quality of the
wireless link, distance to the access points, and/or conges-
tion on system resources. We focus on two complementary
aspects of this problem. On the one hand we study system
performance under such decision-making strategies. We
show convergence of decision-making process to an equi-
librium, and that a congestion- sensitiveutility can pro-
vide substantial (300%) performance improvements over
natural proximity-basedcriterion. On the other hand, we
consider various problems associated with dimensioning
typically expensive backhaul links, for the WAN and set
of LAN hotspots. Our results show how to best jointly
exploit technologies with different coverage scales so as to
statistically multiplex spatial load fluctuations in order to
reduce backhaul costs.

I. I NTRODUCTION

It is increasingly the case that users can access wire-
line networks through diverse service providers and tech-
nologies. In this complex networking landscape, moving
decision-making from access points to devices is a path
to achieving systemscalability [1]. Thus, wireless end-
nodes increasingly have the capability to choose among
several communication interfaces they might use to ac-
cess providers and/or transfer data among themselves.
For example, a cell phone may be able to choose among
two interfaces so as to realize a call through a wide area
cellular network or an 802.11 LAN access point, see
e.g., [2].

Users’ connection strategy could be based on proxim-
ity to an access point, amount of interference, quality of
service or, more abstractly, based on a utility function
capturing a user’s valuation of available services and

This is an extended version of the paper that is to appear under
same name inINFOCOM-2005.It includes proofs that were skipped
in the original paper due to space considerations.

their current costs. Most likely such decision-making
would be carried out by software “agents” and driven
by users’ preferences or engineering design goals. In
turn, the strategy that agents implement to choose among
available providers will have a substantial impact on the
capacity and performance of wireless systems.

In this paper we investigate the interplay between
decision-making mechanisms and network design for
such a multi-provider scenario. Specifically our focus
is on a setting where users may choose among two
wireless data access providers (see Figure 1): a wireless
wide area network (WAN) service provider engineered to
achieve uniform spatial coverage; and a hotspot provider,
i.e., an aggregator of LAN access points (hotspots) each
with limited coverage, and realizing only limited overall
coverage. To capture the spatial interplay among these
and spatially distributed users, in Section II we introduce
a stochastic geometric model akin to those introduced
in [3]. We will model decision-making mechanism of
agents using utilities, and assume agents make greedy
decisions, i.e., they choose the provider offering the
highest utility. In Section III we show the convergence
of the process of agents’ choices to an equilibrium
under assumption that utilities of agents connected to the
WAN APs depend not only on congestion level, but also
potentially on agent’s position relatively to the WAN AP.
Moreover, in contrast to our previous work [4], we shift
the focus from analysis of competitiveness to the analysis
of the benefits that WLAN and WAN providers might get
from cooperation. Specifically, in Section IV, we show
that on the one hand,congestion- sensitivedecision-
making strategies can provide substantial (300-600%)
performance improvements over naturalproximity-based
strategies. On the other hand, we study the complemen-
tary role that such heterogeneous wireless data provider
scenarios may play by allowing spatial multiplexing
(smoothing) of load fluctuations across resources with
different coverage scales. In particular, in Section V we
show that under congestion dependent decision making
strategies, one might potentially significantly reduce the
overall backhaul costs – backhaul links from LAN ac-
cess points to the wired network represent a significant



fraction of the cost of operating such infrastructure [5].

II. SPATIAL MODEL AND NOTATION

To capture the geometry of the network we use the
stochastic-geometric framework introduced in [3]. The
basic idea is to represent the locations of subscribers
and access points (APs) as realizations of spatial point
processes (e.g. Poisson) and the service zones associated
with the access points as functionals of the realizations
of these processes. The main advantage of such models
is that they allow one to analytically capture the effect
of spatial and load variations in the system based on a
reduced set of salient parameters.

We will use threesimple1 point processesΠa, Πh and
Πw, to represent the locations of subscribers, hotspots
and WAN APs respectively. We will refer to the “service
zone” of a WAN or a hotspot AP as the set of locations
on the plane, that the AP can serve. Agents which
fall within the service zones of several APs are able
to choose which AP to connect to. In the next few
paragraphs we describe our models for the service zones
associated with each AP and discuss the criteria the
agents use to choose which AP to connect to.

Geometry of overlagged multiprovider scenario.Fig-
ure 1 exhibits a realization for a stochastic geometric
model for two competing wireless access providers: a
WAN service provider and a provider (aggregator) of
LAN access points/hotspots. WAN base stations are
shown as boxes, with associated coverage areas modeled
by cells of a Voronoi2 tessellation, i.e., each access
point is responsible for locations which are closest to
it3. Thus, the WAN provider’s service is available at
all spatial locations. By contrast, the second provider’s
LAN access points, shown as triangles, have limited
coverage areas which are modeled by discs centered at
each access point. This captures a technology with a
highly constrained transmit power, e.g., 802.11 access
points sharing unlicensed spectrum.

We formally define the service zones as follows. With
each hotspothk ∈ πh we associate a discB(hk,d) of
radiusd > 0 and centered athk. We assume that service
from hk is available only within the disc (see Figure 1).
In addition, we assume that agents desiring to connect
to a hotspot will connect only to theclosest feasible

1The location of each WAN or hotspot AP is not shared by any
other AP [6], i.e. points do not overlap.

2Voronoi cell of wm∈ πw is the set of all points on the plane that
are closer towm than to anywn ∈ πw, n 6= m.

3In practice, there would be overlap among coverage areas associ-
ated with base stations, yet this is a reasonable approximation in the
case where relatively high power levels are used, see e.g., [7].

TABLE I

NOTATION SUMMARY

Πa Point process modeling agents’
locations

Πh Point process modeling hotspots’
locations

Πw Point process modeling WAN AP
locations’

πa, πh, πw Realization ofΠa, Πh, Πw

π(A) All points of a realizationπ that fall
within the setA∣∣π(A)

∣∣ Number of points inπ(A)
|x| Length of vectorx∈ R2

B(x, r) Disc of radiusr centered atx∈ R2

Vw
m Voronoi cell of WAN AP wm∈ πw

Vh
k Voronoi cell of hotspot APhk ∈ πh

K m {k : hk ∈ πh(Vw
m)}, indices of hotspots

located within the Voronoi cellVw
m

Sh
k Service zone of hotspothk

Sw
m Service zone of WAN APwm

Cm Subset ofSw
m where agents

can make choices
C̄m Sw

m\Cm
Mw

m Total number of agents inSw
m

Mh
k Total number of agents inSh

k
MCm Total number of agents inCm
MC̄m

Total number of agents in̄Cm

Nw
m(t) Total number of agents connected

to WAN AP wm at time t
Nh(ai , t) or Number of agents connected

Nh
k (t) to hotspothk at time t,

wherek is s.t.ai ∈ Sh
k

Uw
i

(
Nw

m(t)
)

Utility function of agentai ∈ Sw
m,

connected to WAN APwm at time t

Uh
j

(
Nh

k (t)
)

Utility function of agenta j ∈ Sh
k

connected to hotspothk at time t

hotspot. This yields a service zoneSh
k for hotspot APhk

given by:
Sh

k , Vh
k ∩B(hk,d) .

For each WAN APwm∈ πw we define its service zone,
Sw

m, to be its Voronoi cell,Vw
m , augmented by the service

zones of the hotspots that have their APs withinVw
m :

Sw
m = Vw

m

[( [
k∈K m

Sh
k

)
\

 [

l∈∪n6=mK n

Sh
l


 ,

whereK m denotes the set of indices of hotspots located
within the Voronoi cellVw

m (for notation summary, see
Table (I)).

Note that this definition constrains each agentai ∈ πa

to select between connecting to the closest hotspot AP
hk (if it is covered by its service zone) and the WAN AP
wm which containshk in its service zone4. In the sequel

4As will be seen later this requirement makes each agent’s choice
contingent on information available locally at WAN APwm.
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Fig. 1. Geometry of a multi-tier wireless network.

we will make the following assumption:
Assumption1: For all m∈ N, the service zonesSw

m

contain an almost surely finite number of agents and
hotspots.
We let Cm be the subset ofSw

m that includes spatial
locations where agents would have the option to choose
among a hotspot and WAN APwm:

Cm ,
[

k∈K m

Sh
k .

Users which fall inC̄m , Sw
m\Cm can not make a choice

and will be assumed to automatically connect to WAN
AP wm. By contrast, an agentai ∈Cm is also covered by
some hotspothk’s service zone and can choose between
connecting toeither hk or the WAN APwm.

Decision-making models.We will consider two basic
mechanisms for decision making. We refer to the first
mechanism in which agents inCm simply connect to the
closest hotspot as theproximity based(PX) mechanism.
Under the second,utility based (UT) mechanism, an
agent’s decision is based on a utility function. We will
consider two types of utility functions which we define
below.

Definition 1: We say that the utility functionU j of
an agenta j connected to WAN (or hotspot AP),x, is
congestionand agent dependent ifU j is a function of
a total number of agents connected tox, and possibly is
different for eachj.

Definition 2: We say that a utility functionU j is solely
congestiondependent if, for eachN ∈N, U j(N) =Ui(N)
whenever the agentsa j andai lie within the same service
zone ofx.

Consider an agentai ∈ πa(Cm) that is connected to
WAN AP wm at timet and assume that the total number
of agents that are connected towm at that time is
Nw

m(t). We model the level of “satisfaction” of agentai

with the service via a congestion and agent dependent

utility function Uw
i

(
Nw

m(t)
)

that depends on the current

congestion level and possibly the agent’s location5 within
Sw

m.
We assign a solely congestion dependent utility func-

tion Uh
j

(
Nh

k (t)
)

to an agenta j ∈ πa(Sh
k) connected to a

hotspot at timet. HereNh
k (t) denotes the total number of

agents that are connected at timet to the same hotspot
as agenta j . As opposed to the case with service from
the WAN, we require that the perception of service from
hotspots to be the same for agents connected to thesame
hotspot, i.e., ifai ,a j ∈ Sh

k, thenUh
j (N) = Uh

i (N), for any
N ∈ N. However, we do not impose this restriction for
agents connected to different hotspots, thus we retain
the flexibility of including potentially different hotspots’
types in the model6.

In the sequel we will use the following assumption for
the utility functions:

Assumption2: For all i ∈ N, Uw
i (·) : R+ 7→ R and

Uh
i (·) : R+ 7→ R are continuous, monotonically decreas-

ing functions.
Once utility functions have been specified for each

agent, we will assume agents make decisions consistent
with maximizing their utility, i.e., connect to the provider
offering the higher utility. However, we will account for
a fixed cost of switching to another interface. We stress
here that this is simply a model for decision-making,
and need not involve any specific transaction of money
among agents.

We assume that for each agent inCm there is a
sequence of times, at which the agent makes decisions.
If t is a time when agentai ∈Cm is making a choice,
then, we postulate thatai switches to the WAN APwm

from a hotspothk if and only if it was connected tohk

at time t− and

Uw
i

(
Nw

m(t−)+1
)

> Uh
i

(
Nh

k (t−)
)

+cw ,

wheret− refers to the time immediately prior tot andcw

represents a cost of switching to the WAN AP. Similarly,
the agentai ∈Sh

k switches to a hotspothk at timet if and
only if it was connected to a WAN APwm at t− and

Uh
i

(
Nh

k (t−)+1
)
≥Uw

i

(
Nw

m(t−)
)

+ch ,

wherech represents the cost of switching to a hotspot.
Note that we break ties in favor of hotspots.

5Note that this allows to model a situation when the agents, that
are farther from the WAN AP have potentially worse communication
channels.

6For example, hotspots could support different bandwidths.



III. E QUILIBRIUM : CONVERGENCE AND STRUCTURE.

Convergence to equilibrium.In this section we con-
sider the dynamics of agents’ decision making. In par-
ticular we investigate if the dynamics converge to a par-
ticular fixed point which we refer to as an “equilibrium”.

Definition 3: Consider a service zoneSw
m of WAN AP

wm for a particular realization of agents, hotspots and
WAN APs on the plane. We refer to a particular con-
figuration of agents’ choices withinSw

m as equilibrium,
if, given this configuration, no agent desires to alter its
choice.
Let us denoteMw

m the total number of agents that fall
within Sw

m for a particular realization. We will make the
following assumption.

Assumption3: If ai ,a j ∈ πa(Sh
k) wherek ∈ K m then

|Uw
i (N)−Uw

j (N)|< ch +cw for 1≤ N≤Mw
m.

Assumption 3 requires that the utility associated with
connections to the WAN does not vary too much for
agents located within the service zone of the same
hotspot. For example if the performance of WAN con-
nections simply degrades with distance, then this as-
sumption requires the coverage radius of a single hotspot
to be small enough.

Theorem1: Consider the service zoneSw
m for a par-

ticular fixed realizationπa, πh and πw. Assume that
agents make decisions at times modelled by a Poisson
process with rateµ, and with probabilityp(ai) > 0 a
decision time is associated with agentai . Then, un-
der Assumptions 1-3, given any initial configuration of
agents’ choices, say, at timet = 0, the system converges
a.s. to an equilibrium configuration ast → ∞.
The proof of this result is lengthy and is given in [8].
The argument, however, is straightforward, since one just
needs to show that the dynamics of agents decisions
represents a transient Markov chain.

“Shape” of equilibrium. Note that, in general, the
specific character of the agents’ choices equilibria de-
pends on the utility functions, distances from access
points, and resource allocation mechanisms at the access
points. For a service zone of a particular WAN AP an
equilibrium might not be unique. For solely congestion
dependent utilities, however, as we show in [4], the set
of all equilibria in each WAN service zone could be
made quite “tight”, by appropriately selecting the utility
functions. In this case, the equilibrium condition roughly
corresponds to determining the levelK∗

m which partitions
the users at any hotspothk∈Sw

m into those that choose the
WAN and those that choose the hotspot. Figure 2 exhibits
the structure of an equilibrium for a simple solely
congestion dependent utilities. The cylinders correspond
to the loads, i.e., number of active users, within the
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Fig. 2. “Shape” of equilibrium.

coverage area of the hotspots. The intuition is that only
the hotspots that are overloadedrelativeto the WAN load
will have users that choose the WAN. In [4] we show
for a broad class of solely congestion dependent utility
functions, that, in fact, given any realization of agents’,
hotspots’ and WAN APs’ locations, the configuration of
agents’ equilibrium choicesmaximizes the worst agent’s
utility within a service zone of any WAN AP. This
advocates the use of utility based choice mechanisms
over any other.

IV. SYSTEM PERFORMANCE IN EQUILIBRIUM

Here we will construct several simulation examples
that demonstrate the gains that could be achieved by
employing the utility based choice mechanisms.

Simulation settings. The simulation examples that
follow in the next paragraph are based on the same
geometric and traffic assumptions. We let the locations of
agents, hotspots and WAN APs be given by independent
Poisson point processes with densitiesλa, λh and λw

with values specified in Table II. Each agent generates a
Poisson stream of download requests with rateγ, where
each request is for a file of average sizef . Furthermore
we assume that no request is blocked from service, and
thus restrict ourselves to scenarios with light average
resource utilization7.

We let the utility function of each agent be given
by the negative of the average (over time) delay of file
transfers for the agent8. Thus the quality of service that
an agent experiences depends in part on the resource

7In practice if loads were excessive, users would either be blocked
or would choose not to connect because the utility is too low. In this
case the users’ “unsatisfaction” would be reflected partially in the
value of blocking probability, whereas we can estimate unsatifaction
by measuring, e.g. the average utility of connected users.

8We assume that each agent can reliably estimate her average delay
within a typical time between two sequential changes in configuration
of agents’ choices within a service zone of the WAN AP.



allocation strategy that is employed at the AP of the
agent’s choice. For our simulations we assume that
the agents connected to the same resource are served
according to a processor sharing service discipline. This
assumption is also made in [9] where multi-class proces-
sor sharing model was used to analyze the “Qualcomm”
HDR [10] downlink scheduling protocol used in 3G
wireless systems.

For simplicity we let the rate for each agent from
any AP be constant over time. This assumption greatly
simplifies performance analysis of the system, but it ne-
glects the boost in performance that can be achieved via
serving the agents with “good” channels in opportunistic
manner9. We note however, that when the channel fading
is Rayleigh, the boost in effective rate associated with
serving users opportunistically is roughly proportional
to the logarithm of the number of connected users. Thus
one could argue, that once the number of users connected
to a resource is large enough, the gain in service rate does
not vary much with the number of connected users and
could be modelled as a constant “effective” factor that
multiplies each agent’s rate.

With these considerations, we arrive at the following
simple expression for the the utility of agentai connected
to a hotspothk at time t is:

Uh
i

(
Nh

k (t)
)

=− f

Bh
k − γ f Nh

k (t)
, (1)

where Bh
k is the service rate of any agent connected

to a hotspothk. Note that we used an expression for
the average delay of a single class M/GI/1-PS queueing
discipline [12]. Thus the utility of agents connected to
hotspots are solely congestion dependent.

We allow agents connected to the WAN to be possibly
served with different rates, that might depend on the
location of agents relatively to their WAN APs. Let
Bw

m(a j) denote the rate of agenta j connected to the WAN
AP wm. Then the delay of agenta j connected to the
WAN AP wm at time t is given by that of a multi-class
M/GI/1−PSqueue, and thus:

Uw
j (t) =− f

Bw
m(a j)− γ f ∑ai∈Wm(t) Bw

m(a j)/Bw
m(ai)

, (2)

whereWm(t) is the set of all agents connected towm at
time t.

Remark1: Note that, the utility function (1) does
not obey our Assumption 2 on utilities, since it is
defined only for a bounded sub-interval ofR+ given
by Nh

k (t) <
Bh

k
γ f . In addition, the utility defined by (2) is

9See e.g. [11] for the analysis of queueing models of opportunistic
scheduling.

TABLE II

SIMULATION PARAMETERS

Parameter Notation Value
Agents’ density λa 100 km−2

Hotspots’ density λh 30 km−2

WAN APs’ density λw 0.81 km−2

Hotspot coverage radius d 100 m
Requests/user γ 1 min−1

Average file size f 80 kB
Simulated area |A| 100 km2

WAN b/w (scenario 1) Bw(ai) 1 Mbps
WAN b/w (scenario 2) Bw(ai) 0.04 – 2.46 Mbps

not of a congestion and agent dependent type, meaning
that Theorem 1 is not directly applicable to this case.
We note, however, that for light loads, considered in
our scenarios, the convergence of decision dynamics to
equilibrium when agents’ utilities are defined by (1-2)
can still be established. Although, we will leave the
details of the corresponding proof out of this paper.

System performance.Here we consider two scenar-
ios, where the first models the WAN service as being
uniformly available (i.e. the WAN service is the same
for all agents irrespective of their locations), while the
second allows variation in the WAN rate across agents
according to some distribution. In both scenarios we vary
the available bandwidthBh at each hotspot from0.1 to
1 Mbps. The choice of the range forBh, apart from
exposition convenience, was stipulated by the fact that
the cost of the backhaul is a major bottleneck that affects
the performance of the hotspots [5]. Thus although
up to 11 Mbps wireless access rates are theoretically
available at each hotspot, it is rarely the case that hotspot
providers support backhauls with bandwidth exceeding
1− 1.5 Mbps – typically DSL connection speeds are
more common.

We will consider two performance metrics. The first
is the mean delay averaged across users:

D̄ , 1
|πa(A)| ∑

ai∈πa(A)
D(ai) ,

whereA is the simulated area andD(ai) is average file
transfer delay seen by agentai . The second metric is the
average worst case user’s delay per WAN service zone,
and is defined as

W̄ =
1

|πw(A)| ∑
wm∈πw(A)

max
ai∈Sw

m

D(ai) ,

for a simulated regionA. Since we do not have blocking,
all our results are conditioned on the event that the
overall system is stable. However, the parameters of
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simulation are chosen in such a way that the probability
of instability is very small.

In the first scenario, all agents have the same WAN
service rateBw

m = 1 Mbps and thus the utility of agent
a j connected to a WAN APwm at time t is:

Uw
j

(
Nw

m(t)
)

=− f
Bw

m− γ f Nw
m(t)

.

Therefore, in this case the utilities of agents are solely
congestion dependent. Figures 3, 4 show̄D and W̄
after convergence to equilibrium versusBh for utility
based and proximity based selection strategies. There are
significant gains both in the average per user and worst
case performance per cell if the available bandwidth
at hotspots is less than60% of that available at the
WAN. Given the parameters in Table II one might
deduce that PX based strategy needs at least five times
more bandwidth at the backhaul than the UT strategy to
achieve the same average per user performance and even
more bandwidth to achieve the same value ofW̄.

For the second scenario we assume that any agent
connected to the WAN has rate that is determined by
WAN SNR values given in Table I of [9] and based
on the CDMA 1xEV-DO system [11]. For agents in
C̄m we assign SNR values independently according to
the cdf given in Figure 1 of [9]. Finally, we assign
the WAN SNR values for agents in different hotspots
independently according to the same cdf, and let the
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agents that are in the service zone of the same hotspot
have the same SNR.

We obtain substantial performance gains in average
performance (Figure 5) once UT choice strategy is
employed instead of PX, but performance gains are less
significant than in the first scenario. Moreover, the worst
case performance per WAN service zone (Figure 6)
might, although negligibly, become worse for UT than
for PX, once the bandwidth used at each hotspot be-
comes large enough. This suggests that UT strategy is
likely to be more effective once the service from the
WAN is closer to being uniformly good within WAN
service zones.

V. A NALYSIS AND DESIGN OF COOPERATIVE

MULTIPROVIDER WIRELESS SYSTEMS

Backhaul allocation problem. The results of previous
section are not unexpected. The performance gains arise
from ability of WAN APs to cover considerably larger
service areas than hotspots and thus statistically multi-
plex spatial load fluctuations. Given the WAN service is
uniform enough and utilization of the WAN APs is low,
the WAN APs can serve as a pooled resource which
absorbs load fluctuations within hotspots. Thus the cost
of the hotspots’ backhaul can be potentially reduced, if
hotspots cooperate with WAN APs.

In this section we will further quantify the savings that
can be achieved from such cooperation. We will assume



that a service provider is operating a multi-tier network
where WAN APs coexist with hotspots. The provider
wishes to design a network so as to minimize the
backhaul expense, but desires to keep the performance
of any user within the network at an appropriate level.

We fix a particular realization for the WAN APs and
hotspots and consider a service zoneSw

m of a single
WAN AP wm. Assume for simplicity thatSw

m includes
Hm hotspots that havenon-overlappingservice zones of
area πd2. We assume that the number,Mw

m, of agents
within Sw

m is random, whereas agents distributed on the
plane according to Poisson point process with densityλa.
Let each of the agents generate a stream of download
requests with arrival rateγ and average file sizef .
Finally, assume that the service rates associated with the
WAN and hotspots are the same within their respective
service zones. Thus if an agentai ∈ Sw

m is connected to
the WAN AP, then the expected (over time) delayD(ai)
experienced by this agent is given as in the M/GI/1-PS
discipline:

D(ai) =
f

Bw
m− γ f Nw

m
, (3)

whereBw
m is the bandwidth available at WAN APwm. If

a j is connected to hotspothk, then the average over time
delay,D(a j) of this agent is given by:

D(a j) =
f

Bh
k− γ f Nh

k

, (4)

whereBh
k is the bandwidth available hotspothk.

The provider seeks a solution to the following opti-
mization problem:

Problem1: (Minimizing Backhaul Costs):

min
Bw

m , {Bh
k} , k∈K m

[
Bw

m+ ∑
k∈K m

Bh
k

]
, (5)

under constraints:

P
(

max
ai∈Sw

m

D(ai) > θ
)
≤ δ (6)

0≤ Bw
m≤ B̂w , Bh

k ≥ 0. (7)
Here (6) ensures that the delay of the agent with worst
performance inSw

m is smaller than targetθ with some pre-
specified probability. The constraints (7) assume that the
wireless access bandwidth at hotspots is unlimited and
thus only constrained by the backhaul. By contrast, only
B̂w is available at each WAN AP10.

10Usually the wireless access bandwidth at hotspots exceeds by far
the available backhaul resources, while for 3G service the wireless
access bandwidth is likely to be bottlenecked by the available
spectrum.

Let M̂w
m be the largest integer such that:

P(Mw
m > M̂w

m)≤ δ ,

and

N̂w
m =

⌊
B̂w

γ f
− 1

θγ

⌋
. (8)

HereN̂w
m is the the largest number of agents that the WAN

AP could serve with delay not exceedingθ, if B̂w was
allocated for this AP. We have the following proposition,
which we prove in Appendix:

Proposition1: There are three regimes to consider in
solving Problem 1:
(i) If

N̂w
m ≥ M̂w

m, (9)

then a policy that allocatesBw
m = γ f M̂w

m+ f
θ to the WAN

AP wm and no bandwidth to any of the hotspots is
optimal for Problem 1 whenHm is large enough.
(ii) If

P(Mw
C̄m

> N̂w
m) > δ , (10)

then no solution to Problem 1 exists.
(iii) If both (9) and (10) are violated, then a policy that
is optimal for large enoughHm allocatesBw

m = f γ N̂w
m +

f θ units of bandwidth to the WAN AP andBh(θ,K) =
f γK + f θ units of bandwidth to each of the hotspots in
Sw

m, whereK is the smallest integer such that:

P

(
Mw

C̄m
+ ∑

k∈K m

(Mh
k−K)1{Mh

k>K} > N̂w
m

)
≤ δ . (11)

Regime (iii) identified by Proposition 1 can be viewed
as the regime when both WAN and hotspots benefit from
cooperation. Indeed, the WAN AP is unable to handle
all the traffic due to the limit on the wireless access
bandwidth. In the same time the backhaul allocated
to each hotspot enables a hotspot to serve at mostK
agents, whereK is given by (11). It is optimal to shift
the “overload” in each hotspot to the WAN AP. The
next proposition shows that to realize such load shifting
distributively, one just has to implement utility based
connection strategy for the agents.

Proposition2: Assume that Problem 1 has a solution
and that the bandwidth inSw

m has been split between
hotspots and WAN AP according to Proposition 1.
Let the agents’ selection criterion be based on utility,
whereas the utility function for each agent is given by
the negative of the agent delay, given by either (3) or (4).
Then, the probabilistic requirement (6) is met when
agents connect according to their equilibrium choices.

Proof: (Outline.) One could use Proposition 3.3
in [4] to verify that the choice of utilities guarantees
that the performance of an agent with worst utility



when agents are connected according to their equilibrium
choices is at least as good as for any other connection
strategy.
Optimal bandwidth allocation vs. minimum allocation
for PX strategy. In what follows we compare the optimal
total bandwidth in the sense of Proposition 1 with the
total bandwidth that would be required to meet the prob-
abilistic constraint (6) if the system is designed for PX
based agents’ choice mechanism. To simplify exposition,
we will make this comparison under the assumption of
having no upper constraint on the bandwidth that is used
by the WAN AP, i.e. letB̂w = ∞.

As seen earlier, the optimal strategy for Problem 1
allocates sufficient resources on the WAN and allows all
agents to connect to the WAN APs. Recall that under
PX strategy the agents falling within the service zones
of the hotspots must connect to the hotspots. Under both
optimal and PX resource allocation the agents that do
not fall within the service zones of any hotspot must
be served by the WAN, thus there is a comparable cost
for both PX and optimal strategy that is associated with
provisioning at the WAN for this type of agents. At
the same time, we expect to see overprovisioning cost
associated with agents at hotspots to be quite large for
PX strategy in comparison to the optimal.

We find the lower bound on the savings in over-
provisionning by considering a suboptimal strategy that
allocates two separate channels for agents that are within
and outsideCm. Under this strategy, bandwidth cost
associated with meeting a delay requirement for the users
in C̄m is exactly the same as for PX strategy. We are
left to compare only the savings in bandwidth associated
with serving the agents inCm by either hotspots or the
WAN AP.

We will find the minimal bandwidthsBPX and Bo

that is required to meet the delay requirement (6) of
agents withinCm, once the PX or optimal connection
strategy respectively is deployed. We define the access
bandwidths:

∆BPX = BPX− B̄, and∆Bo = Bo− B̄.

Here B̄ is the minimal bandwidth that has to be used to
serve the agents inCm when there are exactly average
number of them,Hmλaπd2, residing inCm, thus

B̄ = γ f Hmλaπd2 +
f
θ

.

Proposition3: For largeHm,

∆Bo

∆BPX
= O

(
1√
Hm

)
.

Proof: We first find the minimum bandwidth that
has to be allocated to hotspots to meet the delay re-
quirement (6). DenoteM̄ = E

[
Mh

k

]
= λaπd2 and note

thatvar[Mh
k ] = M̄. Let κh(δ,Hm) be the smallest positive

number such that:
[
P(Mh

k ≤ M̄ +κh(δ,Hm)
√

M̄)
]Hm ≥ 1−δ . (12)

Clearly,κh(δ,Hm) is a nondecreasing function ofHm for
any fixedδ. From (3), we obtain:

P
(

max
ai∈Sw

m

D(ai) > θ
)
≤ δ ,

if and only if

BPX = BPX(δ,Hm,θ) = γ f (M̄ +κh(δ,Hm)
√

M̄)+
f
θ

.

Thus HmBPX(δ,Hm,θ) is the minimum total bandwidth
that has to be allocated for hotspots when PX strategy
is deployed, which gives the excess bandwidth:

∆BPX = (Hm−1)
f
θ

+Hmκh(δ,Hm)
√

M̄ .

Now we find the total bandwidth that would be needed
by the WAN AP to serve the agents within the hotspots
and meet the delay requirement. Following the same
logic as above, we find:

B0 = B0(δ,Hm,θ) = γ f (HmM̄ +κw(δ)
√

HmM̄)+
f
θ

,

where we definedκw(δ) as:

P( ∑
k∈K m

Nh
k ≤ HmM̄ +κw(δ)

√
HmM̄) = 1−δ .

Note that, assuming the Central Limit Theorem holds, we
have that∑k∈K m

Mh
k is distributed normally with variance

HmM̄. Since the mean and the variance uniquely define
any normal distribution, we have thatκw(δ) does not
depend onHm. Therefore, for sufficiently large11 Hm and
any fixedδ > 0 we haveκw(δ)≤ κh(δ,Hm). The excess
bandwidth when all agents inCm are served by the WAN
is given by:

∆Bo = Bo− B̄ = κw(δ)
√

HmM̄ .

Comparing∆Bw
m and∆Bh we find:

∆Bo

∆BPX
= O

(
1√
Hm

)
, (13)

where we used thatκh(δ,Hm) ≤ κw(δ) for sufficiently
largeHm.

Remark2: Note that when the delay requirement is
very stringent, in particular whenθ ¿ (γλπd2)−1, then

11In fact we have checked numerically that for1≤ λ ≤ 100 and
0 < δ < 1 we haveκw(δ)≤ κh(δ,Hm) already whenHm≥ 3.



the excess bandwidth∆BPXÀ B̄. SinceBo is of the same
order asB̄ we may find that the scaling of Proposition 3
holds also when the excess bandwidths∆Bo and ∆BPX

are replaced by total bandwidthsBo andBPX respectively.
Remark3: Note that we estimated the cost of band-

width overprovisionning at hotspots for very mild spatial
load fluctuations. We expect even more profound savings
in backhaul costs once the traffic is more bursty, e.g.
when there are hourly traffic fluctuations associated with
users’ migration.

Optimal number of hotspots for a given backhaul
size. Proposition 1 could also be used to compute the
optimal number of hotspots that should be placed within
Sw

m. In particular a service provider might wonder if
putting more hotspots in the area but having them able to
support less users is better then doing otherwise. Indeed,
we have a tradeoff between the risk associated with
having users uncovered by any hotspot and the risk of
having too often users that hotspots can not support.

By Proposition 1, part (iii) we know thatBw
m should

be made as large as the available spectrum can support,
and thus we have to decide only on how many hotspots
would give best performance withinSw

m when there is
a constraint on the total used by hotspots backhaul
bandwidth,Bh

tot. More formally, we need to findHm, such
that

P

(
Mw

C̄m
+ ∑

k∈K m

(Mh
k−K)1{Mh

k>K} > N̂w
m

)
(14)

is minimized under constraint:

Hm( f γK + f θ)≤ Bh
tot . (15)

Note that behavior of the probability given by (14) as
a function of Hm might be quite complex. Figure (7)
exhibits this behavior in a typical scenario. Observe
that P at the graph (7) goes down steadily withHm,
until Hm = 10. At this point, the number of agents that
each hotspot can support without violating the delay
requirement is just above average of the number of
agents falling in each hotspot (see Figure (8)). The graph
is much less regular once each hotspot is able to support
less than this number of agents. Still, the lowest point
at the graph is forHm = 17, whence the number of
agents that each hotspot can support without violating
the delay requirement is below the average number of
agents falling within a single hotspot. Hence, in this
scenario, when the optimal number of hotspots is used,
each hotspot would need to cooperate with the WAN by
“shifting” its frequently occurring overloads.

Backhaul allocation when WAN service is not uni-
formly available. Let us now assume that the WAN AP
does not provide uniform quality of service to all points
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Fig. 8. The largest number of agents a hotspot could serve without
violating target delay vs.Hm.

within its service zone. This situation would occur if, for
example, the signal from the WAN AP at a particular
location is shadowed by an obstruction. In this case, the
performance of the system will depend not only on the
number of employed hotspots and size of their backhaul,
but also on their positions.

To model such scenario we will let the service zone
Sw

m to be comprised ofHm non-overlapping, equal-sized
subzones (sites){Sh

k}Hm
k=1, whereSh

k could be completely
covered by a single hotspot. Suppose that the rate
Bw

m(ai) = Bw
m(hk) of an agent located within the site

Sh
k, for k ∈ K m belongs to a discrete setB , {bw

r }NB
k=1

that consists ofNB different rates. We assume that of
HmÀ NB, thus there are likely to be many sites inSw

m

with the same WAN rate.
We assume that no hotspots have been installed, but

Sh
k, for k ∈ K m represents a site of possible hotspot

installation. Our goal is to consider optimal choices for
hotspots’ sites and dimensioning of backhaul bandwidth.
Since the analog of Problem 1 is much more complex in
this setting, we will make several simplifying assump-
tions and reformulate the problem as to retain the key
aspects of it.
(i) We assume that the spectrum at the WAN is fully
utilized. Since the WAN service could be arbitrarily poor
in some locations it might happen that a single hotspot
installed at such locations would exploit the backhaul



bandwidth much more effectively. Thus the solution to
an analog of Problem 1 posed in this scenario might lead
in some cases to the conclusion that the available at the
WAN spectrum for communication should not be fully
utilized. Since the cost of purchased spectrum probably
exceeds by far the backhaul associated costs within a
cell, such solution would indicate that the placement of
the WAN AP or overall WAN design is poor.
(ii) We assume that the operation regime is such that
each hotspot takes the largest number of agents within
its service zone that it can serve with average delay of
at mostθ and shifts the remaining agents to the WAN
AP.
(iii) Note that the assumption (i) allows us to consider
optimization of backhaul allocation associated only with
hotspots, and assumption (ii) permits us to account only
for the performance of agents connected to the WAN
AP. Our last modification to Problem 1 is that in place of
maxai∈Sw

m
D(ai) we will concentrate on the delay averaged

across agents that are connected to the WAN APwm:

D̄w
m =

1
Nw

m
∑

a j∈Wm

D(a j) ,

whereWm dentes the set of agents that are connected to
the WAN via rule described in (ii). Using the expression
for average delay in the multi-class M/GI/1-PS queue we
have:

D̄w
m =

1
Nw

m

(
1

∑a j∈Wm

f
Bw(a j )

− γ

)−1

. (16)

With this set of assumptions we arrive at:
Problem2:

min
{Bh

k} , k∈K m

[
∑

k∈K m

Bh
k

]
, (17)

under constraints:

P(D̄w
m > θ)≤ δ , (18)

Bh
k ≥ 0, ∀k∈K m. (19)

Let us assume that each hotspothk, k∈K m is provided
enough bandwidth to serve up toKk agents with delay
not exceedingθ, i.e.:

Bh
k = γ f Kk +

f
θ

.

Then, solving Problem 2 reduces to finding the optimal
set of values{Kk}k∈K m

, whereKk ≥ 0 for all k ∈ K m.
In [8] we show how to find approximate values forKk. In
summary, we approximate the distribution of the number
of agents withinSh

k via a Gaussian random variableη
such thatEη = varη = E[Mh

k ]. Then

g(Kk) , E
[
(η−Kk)1{η>Kk}

]
,

approximately gives the average number of agents within
a hotspot that connect to the WAN and

L({Kk}k∈K m
) , ∑

k∈K m

g(Kk) , (20)

approximately gives the average of the total number of
agents withinSw

m that connect to the WAN. We replace
Nw

m in (16) via its average approximated by (20) and
treat Kk for eachk ∈ K m as taking continuum values.
This allows us to reduce Problem 2 to a nonlinear
programming one, at which point we use Kuhn-Tucker
conditions to arrive at the approximate solution for the
set{Kk}k∈K m

.
Proposition4: We haveKk = Kl if Bw

m(hk) = Bw
m(hl ).

Furthermore, ifKk 6= 0 then

P(η > Kk)
Bw

m(hk)
= ν ,

for some constantν, such that the set{Kk}k∈K m
obeys:

∑
k∈K m

f
Bw

m(hk)
g(Kk) =

(
1

θL({Kk}k∈K m
)
+ γ

)−1

.

Simulation results. We implemented the approximate
solution of Problem 2 given by Proposition 4 when the
traffic parameters and the geometry of WAN network
is as we had for Scenario 2 in Section IV. Within a
single service zone that has size of an average typical
WAN service zone, we simulated 50 sites with different
WAN rate, where rates were generated randomly and
independently for each site as described in the setup of
Scenario 2. The results of the optimization for a partic-
ular realization of WAN rates, are shown in Figure 9.
Note that the bandwidth is allocated only to hotspots at
the sites that experience the worst WAN rate. We find
that on average the total bandwidth required for hotspots
in the WAN service zone is less than2.5Mbps, once
appropriate backhaul is allocated to optimally selected
sites. For comparison, to guarantee the same average
performance in the setup of the Scenario 2, where each
hotspot was allocated the same bandwidth, one needs
about 7.5 Mbps total to be allocated to hotspots on
average per service zone of a WAN AP.

VI. CONCLUSION

In this paper we have taken a first step towards
analyzing a possible future wireless network land-
scape which incorporates heterogenous technologies,
e.g., WAN, LAN, Bluetooth etc. In order to allow end
nodes to leverage available resources, end nodes will
be equipped with a multiple (or flexible) interfaces
enabling them to access among various services. Given
the complexity of such systems, and to achieve a degree
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of scalability, it makes sense to allow end nodes to
decide which services are preferable, at a given point
in time. However, in this context the criterion used
to make such decisions becomes an important part of
the overall system design. It will not only impact the
performance that the user population will see, but also,
the resources (e.g., backhaul links density of access
points) the providers need to put into place to handle
the traffic loads.

To our knowledge this is the first effort to attempt
to model and evaluate such heterogeneous systems. In
this paper we have shown that even a complex spatial
and congestion dependent decision-making process will
likely have nice convergence properties to sets of equi-
libria. From a performance perspective we showed that
congestion dependent decision making is likely to pro-
vide on average much better performance to users than
simple proximity based strategies, but only when hotspot
bandwidth are limited. Since backhaul links corresponds
to high recurring costs, it is at this point not unreasonable
to expect these to be dimensioned conservatively and
thus enabling congestion-dependent decision making by
end nodes when presented with WAN and hotspot service
options to be worthwhile.

At the same time, in this paper we address the
complementary problem of joint network design for a
system incorporating WAN and set of hotspots to support
a spatially distributed set of users. The key insight, is
that WAN capacity is particularly valuable, because it
permits statistical multiplexing of spatial fluctuations in
user loads over a wide area. By contrast hotspots have
the potential to substantially and inexpensively enhance

capacity in a restricted area. Thus under the uniform
loads investigated in this paper, it is the case that WAN
resources are typically used as much as possible with
only the necessary bandwidth allocated across hotspots
to alleviate overloads on the WAN. However, if there are
spatial inhomogeneities in the capacity the WAN can
provide to users, or in the characteristics of the load,
the synergies between these technologies take a different
form. Indeed one may conclude that hotspots and the
associated backhaul bandwidth is truly worthwhile at
spatial locations with a a high steady (i.e., low variance)
offered load and where the WAN is not able to provide
reasonable service. Our work shows that a joint system
design is likely to exploit such variations in order to
reduce overall system cost significantly.

APPENDIX I
PROOF OFTHEOREM 1.

Assumption 3 yields the following technical Lemma,
that is used to prove Theorem 1.

Lemma1: Considerai ,a j ∈ πa(Sh
k) wherehk ∈Sw

m and
suppose Assumptions 2 and 3 hold. Furthermore leta j

be connected tohk and supposeai switches from WAN
AP wm to hk at time s. Then a j can not switch from
hotspothk to WAN AP at time t > s if no other agent
has switched inSw

m during the time interval(s, t).
Proof: We prove the lemma by contradiction.

Assume that an agenta j has switched fromhk to WAN
AP wm at timet, then the following condition must have
been satisfied:

Uw
j

(
Nw

m(t−)+1
)

> Uh
j

(
Nh

k (t−)
)

+cw . (21)

Furthermore, suppose agentai switched from the WAN
AP wm to hotspothk at times< t, and thus:

Uw
i

(
Nw

m(s−)
)

+ch ≤Uh
(

Nh
k (s−)+1

)
. (22)

Since we have assume that no other agent withinSw
m

has switched in time interval(s, t), we haveNw
m)(s−) =

Nw
m(t−) + 1 and Nh

k (s−) = Nh
k (t−)− 1. Now combin-

ing (21) and (22), we have:

Uw
j

(
Nw

m(t−)+1
)
−Uw

j

(
Nw

m(t−)+1
)

> ch +cw ,

that is in contradiction to Assumption 3.
Now we give the proof of Theorem 1.

Proof: Note that under the assumptions of Theo-
rem 1, the dynamics for the configuration of agents’ deci-
sions inSw

m follow a continuous time Markov chain with
state X (t) := {X(ai , t)| ai ∈ πa(Cm)}, where X(ai , t) ∈
{0,1} – denotes the “connection state” of the agentai at
time t and takes the value0 if the agent is connected to
a hotspot and1 if it is connected to a WAN AP. (Note



that we need only to consider the states of agents located
within Cm.) We will classify transitions for this chain
as “up”, “down” and “stay”, corresponding to agents
switching from hotspots to the WAN AP, vice versa,
or staying with their current choice. For simplicity we
can uniformize the continuous-time chain to focus on
a discrete time Markov chain capturing times where
decisions are made. We shall denote these decision
times bys= 1,2, . . .. The transition probabilities for the
discrete Markov chain are determined by two factors: the
probability that a particular agent reconsiders her deci-
sion at that time, and whether the current configuration
cause the agent to change providers.

By Assumption 1, each service zone contains an a.s.
finite number of agents, thus there is an a.s. finite number
of different configurations for agents’ choices so the
set of possible configurations is finite a.s.. It follows
that some of the states must be revisited by the chain
infinitely often. To show the convergence of a system
to an equilibrium, it is sufficient to construct a feasible
path for the chain evolution which hits an equilibrium
state with positive probability,starting from any initial
configuration.

Below we present the steps of an algorithm to con-
struct a pathP consisting of a sequence of transitions
for the stateX (s), which, starting from any arbitrary
configuration of agents’ choicesX (0), ends up in an
equilibrium configuration after a finite number of steps.
Let Au(s) denote the set of agents that, given the config-
uration at times, could make “up” transitions andAd(s)
the set of agents that can make “down” transitions. Let
us also define a nondecreasing composite function,

Ji(N) , (Uw
i )−1◦ (Uh

i (N)+cw) ,

where(Uw
i )−1 denotes a unique and decreasing, due to

Assumption 2 inverse ofUw
i . We describe our algorithm

in terms of pseudo-code shown in Table III, where for
convenience we denoteNh(ai , t) = Nh

k , wherek is such
that ai ∈ Sh

k. Note that our notational convention is that
an agent making her decision at time slots≥ 1 is basing
this decision by observing the state of the system prior
to that time, i.e. times−1.

After initialization, the algorithm (see Table III) al-
ternates between the Up- and Down- transition phases.
During the Up-transition phase only the “up”-switchings
occur, where the agents performing these transitions are
selected to be those which are the most “unsatisfied”.
This phase ends once the set of agents that are able
to perform the “up”-transitions depletes. At that time
the algorithm switches to the “down”-transition phase,
where at most one agent performs a “down”-transition.
We introduce an auxiliary integer sequence{Z(t)}∞

t=1

with values that depend on the state of the system prior
to a transition at timest = 1,2, . . ., and show that this
sequence is nonincreasing. This allows us to argue that
Z(t) converges to a limitZ∗ after an a.s. finite number
of transitions. Then, we demonstrate that the equilibrium
must be reached in a.s. finite time onceZ(t) has reached
the levelZ∗.

Initialization:
s= 1 andX (s) = X (0)

Z(s) := 0
go to Up-transition phase

Up-transition phase:
if Au(s) 6= /0
{ j := argmaxi: ai∈πa(Au(s))

⌊
Ji

(
Nh(ai ,s)

)⌋

Z(s) :=
⌊
Jj

(
Nh(a j ,s)

)⌋

let a j make an “up” transition
update the stateX (s)
s := s+1 }

otherwise: go to Down-transition phase

Down-transition phase:
if Ad(s) 6= /0:
{ choose anya j ∈ Ad(s)

let a j make a “down” transition
update the stateX (s)
Z(s) := Z(s−1)
s := s+1
go to Up-transition phase}

otherwise: done

TABLE III

PSEUDO-CODE FOR CONSTRUCTING THE PATHP CONVERGING TO

EQUILIBRIUM .

Note that if the algorithm does not enter an Up-
transition phase then there can only be “down” tran-
sitions in the system. Since the number of agents that
are connected to each WAN AP is finite, the system
will inevitably converge to an equilibrium which has no
agents connected to the WAN APwm. Instead, assume
that the system enters the Up-transition phase at timet0.
We will show that the sequenceZ(s), s= t0, t0 + 1, . . .,
defined in Table III, is a non-increasing sequence.

We start by relating the functionJj(·) to agenta j ’s
eligibility for an “up” transition at timet. We must have:

Uw
j

(
Nw

m(t−1)+1
)

> Uh
j

(
Nh(a j , t−1)

)
+cw ,

for an agent to be eligible to switch “up” at timet ≥ 1.
This is equivalent to:

Nw
m(t−1) < Jj

(
Nh(a j , t−1)

)
−1, (23)

which in turn can be strengthened to:

Nw
m(t−1)≤

⌊
Jj

(
Nh(a j , t−1)

)⌋
−1 (24)



with a strict inequality in (24) ifJj

(
Nh(a j , t−1)

)
∈ N.

Now consider any Up-transition phase. Note that⌊
Ji

(
Nh(ai ,s)

)⌋
can only decrease for each agentai ∈Sw

m.

Indeed, for eachi, the functionJi(·) is nondecreasing and
Nh(ai ,s) could only be reduced during an Up-transition
phase. Now, since the number of agents connected to the
WAN AP wm could only increase and by Assumption 2,
Uw

i (·) is a decreasing function, the valueUw
i (Nw

m(s)) can
only decrease during an Up-transition phase. Clearly, by
the general eligibility requirement (24), we have that
the set of agents eligible for “up” transitions can only
diminish within the Up-transition phase. HenceAu(s1)⊂
Au(s2), whens1 < s2 are both restricted to the period of
the same Up-transition phase. Thus, for suchs1 ands2:

Z(s1) = max
i:ai∈Au(s1)

⌊
Ji(Nh(ai ,s1))

⌋

≥ max
i:ai∈Au(s2)

⌊
Ji(Nh(ai ,s2))

⌋
= Z(s2) ,

and henceZ(s) is a nonincreasing sequence whenevers
is within a single Up-transition phase.

We now show thatZ(s) is in fact nonincreasing for
all s≥ t0. Suppose that an Up-transition Phase finished
at timeτ+1, anda j was the agent that switched “up” at

time τ, henceZ(τ) =
⌊
Jj

(
Nh(a j ,τ−1)

)⌋
. We will con-

sider two scenarios. In the first scenario there is only one
“down” transition at timeτ + 1 and Au(τ + 2) becomes
nonempty. We will show that in this scenarioZ(τ+2)≤
Z(τ). In the second scenario there is a sequence ofn> 1
“down” transitions, before the setAu(τ+n+1) becomes
nonempty for the first time. In this scenario we will show
once again thatZ(τ+n+1)≤ Z(τ).

Scenario 1:Au(τ+2) 6= /0. Observe that once an agent
ai has performed a “down” transition at timeτ +1, we
have:

Jk

(
Nh(ak,τ+1)

)
= Jk

(
Nh(ak,τ)

)
,

for all agentsak ∈ Sw
m that do not fall within the service

zone of the same hotspot asai . For such agents we also
have that:

⌊
Jk

(
Nh(ak,τ)

)⌋
≤

⌊
Jj

(
Nh(a j ,τ)

)⌋
= Z(τ) ,

sincea j was chosen to make an “up” transition at time
τ. Hence we have that for each agent that does not fall
within service zone of the same hotspot asai :

⌊
Jk

(
Nh(ak,τ+1)

)⌋
≤

⌊
Jj

(
Nh(a j ,τ)

)⌋
= Z(τ) . (25)

Now, by Lemma 1, no agentak that falls in the
service zone of the same hotspot asai could switch
“up” immediately after ai has switched “down”, and

thus ak 6∈ Au(τ + 2). But then, in view of (25) and the
definition for Z(t), we conclude that:

Z(τ+2)≤ Z(τ).

Scenario 2: Au(τ+ l) = /0 for l = 1, . . .n and Au(τ+
n+1) 6= /0. We will show that

Z(τ+n+1)≤ Z(τ) , (26)

by contradiction. Assume that the inequality (26) is not
satisfied. Then, we must have that:

⌊
Jk

(
Nh(ak,τ+n−1)

)⌋
>

⌊
Jj

(
Nh(a j ,τ)

)⌋
, (27)

for some agentak within Cm. Indeed, consider an agentai

that switches “down” at timeτ+n. Sinceai ’s switching
down does not affect the number of agents connected to
hotspots that do not containai in their service zone, we
have:

Jr

(
Nh(ar ,τ+n−1)

)
= Jr

(
Nh(ar ,τ+n)

)
,

for all agentsar ∈ Sw
m that do not fall within the service

zone of the same hotspot asai . Moreover, by Lemma 1,
no agentap that belongs to the service zone of the same
hotspot asa j can be eligible for an “up” transition at
time τ+n+1, i.e. ap 6∈ Au(τ+n+1). Hence, if

max
l :al∈Au(τ+n+1)

⌊
Jl

(
Nh(al ,τ+n)

)⌋

= Z(τ+n+1) > Z(τ) ,

then
max

l :al∈Sw
m

⌊
Jl

(
Nh(al ,τ+n−1)

)⌋
> Z(τ) ,

which translates into (27).
Next we show that the agentak, wherek satisfies (27),

was eligible to switch “up” at timeτ+n. Consider again
an agenta j that switched “up” at timeτ. To be eligible
for making an “up” switch at timeτ, according to (24)
we must have:

Nw
m(τ−1)≤

⌊
Jj

(
Nh(a j ,τ−1)

)⌋
−1 (28)

with a strict inequality in (28) ifJj

(
Nh(a j ,τ−1)

)
∈ N.

Now consider the agentak, and note that

Nw
m(τ+n−1)≤ Nw

m(τ−1) , (29)

since one agent has switched “up” at timeτ and at least
one agent has switched “down” at time interval(τ,τ +
n−1]. Considering the agentak at timeτ+n−1 in view
of (27), (28) and (29) we obtain

Nw
m(τ+n−1) <

⌊
Jk

(
Nh(ak,τ+n−1)

)⌋
−1.



This leads to:

Uw
k (Nw

m(ak,τ+n−1)+1) > Uh
(

Nh(ak,τ+n−1)
)

,

and hence the agentak was eligible for an “up” transi-
tion at time τ + n. We thus have a contradiction with
the assumption that no agents were eligible for “up”
transitions in the interval(τ,τ+n]. This proves that the
inequality (26) holds.

To summarize we have proved that:

1) Z(s) is nondecreasing ifs is restricted to the period
of a single Up-transition phase

2) If τ + 1 is the time when an Up-transition phase
has finished andτ + n+ 1, for n≥ 1 is the time
when the next Up-transition phase has started,
then:Z(τ)≥ Z(τ+n+1).

ThereforeZ(s) is a nonincreasing sequence and since
Z(s) is integer valued it must have an integer-valued limit
Z∗ which is reached by the sequence in a.s. finite time
t1. We are left to show that the algorithm needs a.s. finite
number of steps before an equilibrium is in fact reached.

For t ≥ t1, we haveZ(t) = Z∗ and there are three
scenarios for system evolution. The first scenario cor-
responds to the case where only “down” transitions take
place in the system, and in the second – only “up”
transitions are possible. In both of these scenarios the
system reaches an equilibrium once all agents inCm have
switched to either the WAN or their respective hotspots.
The third scenario is when the system undergoes both
“up” and “down” transitions that are intermingled and
we consider this scenario below.

From (24) we obtain that the agent is eligible for an
“up” transition at timet > t1 if and only if:

Jj(Nh(a j , t−1)) = Z∗+η , (30)

whereη ∈ [0,1), and

Nw
m(t−1)≤ Z∗−1, (31)

with strict inequality if Jj(Nh(a j , t − 1)) ∈ N. Now,
assume that an Up-transition phase has ended at time
τ̃ + 1 > t1. Then this phase could finish either of the
conditions (30) or (31) or both were violated at time
t = τ̃+1 for all agentsa j ∈Cm.

Suppose that at timet = τ + 1 inequality (30) is
violated for all a j ∈Cm, but inequality (31) is not. It is
sufficient to show that no agent can become eligible for
an “up” transition ever again at timest ≥ τ̃+1, since then
the algorithm exits once all agents inCm have connected
to their respective hotspots. To show this, we note first
that if for any agenta j ∈Cm

Jj(Nh(a j ,τ))≥ Z∗+1 (32)

then, from (31)

Nw
m(τ) < Jj(Nh(a j ,τ))−1,

which indicates, via (23) thata j is eligible to switch “up”
at timeτ̃. This is in contradiction to what we assumed in
the beginning of the paragraph and hence we can only
have:

Jj(Nh(a j ,τ))≤ Z∗−1, (33)

for any agenta j ∈ Cm. Now observe that, by (30) an
agenta j ∈Cm may become eligible for an “up” transition
at time t > τ̃ + 1 only if Jj(Nh(a j , t)) has increased to
or above levelZ∗. Since Jj(·) is nondecreasing, there
must be a “down” transition that would occur within the
hotspot that containsa j in its service zone. But if such
“down” transition happens at timẽτ+1, no agent within
the service zone of a hotspot containinga j can become
eligible for an “up” transition at timẽτ+2 as we proved
in Lemma 1. Clearly we have that (31) is still satisfied
for t = τ̃+1, but then we must have

Jj(Nh(a j , τ̃+1)) < Z∗ , (34)

for any a j ∈Cm since no agent is still available for an
“up” transition. By induction we can prove that no agent
is eligible for an “up” transition at any timet ≥ τ̃+2.

Now suppose that (31) is violated at timet = τ̃ + 1.
Note that the condition (31) was met at timet = τ̃, since
an “up” transition occurred at timẽτ. Due to this “up”
transition, we also haveNw

m(τ̃) = Nw
m(τ̃− 1) + 1 which

yields Nw
m(τ̃) = Z∗. Now let L(τ̃ + 1) denote the set of

agents for which:
⌊
Jk(Nh(ak, τ̃))

⌋
= Z∗ . (35)

If no “down” transition occurs at timẽτ + 1 then the
algorithm has exited and thus an equilibrium has been
reached. Otherwise, assume that the “down” transition
at time τ̃ + 1 was in the service zoneSh

l of a hotspot
hl ∈Sw

m. Note, that by Lemma 1, no agent that falls within
Sh

l can become eligible for an “up” transition at time
τ̃+2, thus, sinceNw

m(τ̃+1) = Z∗−1, the condition (30)
must be violated for those agents at timeτ̃ + 2. Hence
these agents could not be within the setL(τ̃ +1) since
otherwise they would be eligible for an “up” transition at
time τ+2. Furthermore, transition toSh

l does not change
the number of agents connected to hotspotshn 6= hl , and
thus we have:

Ji(Nh(ai , τ̃+1)) = Ji(Nh(ai , τ̃))

for ai 6∈ Sh
l . We thus conclude thatL(τ̃+1) = L(τ̃+2).

Now if L(τ̃ +1) = /0 then, similarly to as we argued
above, no agent can ever become eligible for an “up”



transition and the algorithm exits in finite time. Oth-
erwise, if L(τ̃ + 1) 6= /0 then at least one agenta j ∈
L(τ̃+2) is eligible for an “up” transition at timẽτ+2 by
sufficient conditions (30)-(31), sinceNw

m(τ̃+1) = Z∗−1
and bJj(Nh(a j , τ̃ + 1))c = Z∗. Thus a j can perform an
“up” transition, which can only diminish the setL at
a subsequent timẽτ + 3. By induction we thus can
show that the setL(t) necessarily depletes in finite time,
whence the algorithm exits.

In summary we have shown that from any starting
configuration there exists a path, that with positive
probability reaches an equilibrium state. Since the state
space is finite, there must be a state which is visited in-
finitely often. Whence the Markov chain will necessarily
eventually hit an equilibrium state.

APPENDIX II
PROOF OFPROPOSITION1

Proof: Observe, that distribution of the agents is
homogeneous, thus by symmetry we must allocate the
same amount of bandwidth to each of the hotspots. To
show the optimal allocation for the first regime, consider
an allocation strategyA1, where each of the hotspots is
givenBh units of bandwidth. Then a hotspot could serve
at mostNh(θ,Bh) agents, where

Nh(θ,Bh) =
⌊

Bh

γ f
− 1

θγ

⌋
.

The total number of agents which hotspots could serve
is:

N1 = Hm

⌊
Bh

γ f
− 1

θγ

⌋
≤ HmBh

γ f
− Hm

θγ
. (36)

Now consider an allocation strategyA2 that shifts∆B
units of bandwidth from each hotspot to the WAN AP,
where∆B < Bh is such that

Bh−∆B
γ f

− 1
θγ
∈ N .

We will assume that the WAN AP uses the shifted
bandwidth to serve the agents within the hotspots, Then,
from (5) and (6) the total number of agents inCm that
could be served by such system, without violating the
delay requirement is:

N2 = Hm

⌊
Bh−∆B

γ f
− 1

θγ

⌋
+

⌊
Hm∆B

γ f
− 1

θγ

⌋

≥ Hm
Bh−∆B

γ f
− Hm

θγ
+

Hm∆B
γ f

− 1
θγ
−1

=
HmBh

γ f
− Hm+1

θγ
−1≥ N1−1− 1

θγ
. (37)

Now note that under allocation strategyA1, N1 agents
in total could be served in the hotspots only if each of
them in fact hadNh(θ,Bh) agents to serve. However, if
the system gets large enough (HmÀ 1) with probability
arbitrary close to 1 there is at least

⌈
1+ 1

θγ

⌉
hotspots

containing at mostNh(θ,Bh)−1 agents at their service
zones. We thus obtain that the performance under allo-
cation strategyA2 is at least as good as the performance
underA1 onceHm is large enough. This shows that if (9)
holds then a policy that allocatesBw

m = γ f M̂w
m+ f

θ to the
WAN AP wm is optimal for sufficiently largeHm.

Consider the regime where the inequality (9) is not
satisfied. Then, a policy which is optimal for large
enoughHm allocatesBw

m = f γ N̂w
m+ f θ units of bandwidth

to the WAN AP, whereN̂w
m is given by (8). For a

particular realization of agents let the number of agents
that do not fall within a service zone of any of the
hotspots be denoted asMw

C̄m
and let

∆Nw
m = N̂w

m−Mw
C̄m

. (38)

If ∆Nw
m > 0 then ∆Nw

m agents can be served by WAN
AP in any of the hotspots without violating the delay
constraint at the WAN AP. Clearly, the optimal way to
use the extra bandwidth is to serve agents from the most
congested hotspots. In particular, assuming that agents in
Cm are initially connected to their hotspots, an algorithm
that selects which agents the WAN would serve, at each
step takes the most congested hotspot and switches an
agent connected to this hotspot to the WAN AP. As a
result, the number of agents connected to hotspots and
the WAN will be represented by the Figure 2 with a
“slicing” plane at some level.

If, however, for some realization of agents∆Nw
m < 0

then no agents inside the hotspots’ service zones can
be served by the WAN. In this case, the agents in
C̄m connected to the WAN do not meet their delay
requirement. DenoteFw the event:

Fw = {N̂w
m < Mw

C̄m
} . (39)

Clearly if P(Fw) > δ, then the optimization problem (1)
does not have a solution that meets the probabilistic
requirement (6) (statement (ii) of the proposition).

Thus, in the remaining case, we assume thatP(Fw) <
δ, and hence the delay requirement of the agents inC̄m is
always met. Below we find the minimum bandwidth that
has to be allocated to hotspots so that the agents within
Cm meet their delay requirement too. We fixK > 0 and
let:

Bh(θ,K) = f γK + f θ .

Thus Bh(θ,K) is the amount of bandwidth that each
hotspot has to be supplied to serve up toK agents within



its service area. Assume thatBh(θ,K) is indeed provided
to each of the hotspots, then the event that any hotspot
hk has more thenK agents connected to it is equivalent
to the eventFh which has:

∑
k∈K m

(Mh
k−K)1{Mh

k>K} > ∆Nw
m , (40)

Clearly the eventFw implies the eventFh, and thus, guar-
anteeing thatFh does not occur is enough to guarantee
that Fw does not occur either. Thus, via plugging (38)
into (40) we have that the value ofK is as given in
part (iii) of the proposition.

APPENDIX III
PROOF OFPROPOSITION4

We will derive the approximate solution to Problem 2
under the assumption12 that Kl = Kk whenbw

l = bw
k , and

l ,k∈K m. First, we will elaborate on the expression (16)
for D̄w

m. Note, that we can express the number of agents
Nw

m connected to WAN APwm via the set{Kk}k∈K m
as

follows:

Nw
m = ∑

k∈K m

(Mh
k−Kk)1{Mh

k>Kk}

=
NB

∑
r=1

∑
{k∈K m|Bw

m(hk)=bw
r }

(Mh
k−Kk)1{Mh

k>Kk} . (41)

Let nm(r) denote the number of sites inSw
m with WAN

rate equal tobw
r . In the limit nm(r) À 1 we can apply

the Central Limit Theorem in (41), to obtain that:

Nw
m =

NB

∑
r=1

nm(r)ξr ,

whereξr is a normally distributed random variable with
expectation and variance equal to

g(Kr) , E
[
(Mh

r −Kr)1{Mh
r >Kr }

]
.

(Note, that since by our assumptionSh
k have the same

sizes for all k ∈ K m, we have thatMh
k has the same

distribution for all k∈ K m. Hence,g(Kr) depends only
on Kr .) Thus, in the limit whennm(r) À 1 for r =
1, . . . ,NB, we have thatNw

m is normally distributed with
mean and variance equal to:

L({Kk}k∈K m
) ,

NB

∑
r=1

nm(r)g(Kr) .

12Note that the optimal solution to Problem 2 might not have this
property. However, one can show that for the solution to the original
optimization problem 1 such property holds.

Similarly, elaborating on the sumΣ that appears
in (16), we have:

Σ , ∑
a j∈Wm

f
Bw

m(a j)
= ∑

k∈K m

f
Bw

m(hk)
(Mh

k−Kk)1{Mh
k>Kk}

=
NB

∑
r=1

f
bw

r
∑

{k∈K m|Bw
m(hk)=bw

r }
(Mh

k −Kk)1{Mh
k>Kk}

=
NB

∑
r=1

f nm(r)
bw

r
ξr .

Thus, in the limit whennm(r) À 1 for r = 1, . . . ,NB,
we have thatΣ is normally distributed with mean and
variance equal to:

NB

∑
r=1

f nm(r)
bw

r
g(Kr)

Now, it is simple to see that the constraint (18) reduces
to requiring that:

NB

∑
r=1

f nm(r)
bw

r
g(Kr)≤

(
1

θL({Kk}k∈K m
)
+ γ

)−1

+ ε , (42)

where the variableε depends onδ and is proportional to
the variances ofNw

m and Σ. Note, that the variances of
Nw

m and Σ scale as the square root of their respective
averages. Thus, when bothNw

m and Σ are large on
average, andδ is “moderately small”, we can neglect
ε in (42). We thus arrive into the following optimization
problem:

min
NB

∑
r=1

nm(r)
(

γ f Kr +
f
θ

1{Kr>0}

)
.

under constraint:
NB

∑
r=1

f nm(r)
bw

r
g(Kr)≤

(
1

θL({Kk}k∈K m
)
+ γ

)−1

. (43)

It is simpler to treat this problem assuming eachKr

takes continuum of values instead of in discrete set. To
that effect we might computeg(Kr) replacingMh

k , for
all k ∈ K m, by normal random variablesηk, that have
the same average and the variance asMh

k . (This step is
supported by the fact that whenEMh

k is large enough the
cdf of a Poisson random variable does not differ much at
integer points from the cdf of the corresponding normal
random variable.) Also, whenγθ À 1 (delay require-
ment is not very stringent) we could eliminate the term
f
θ 1{Kr>0} from the objective. Then, both the constraint
and the objective will be convex functions. Using Kuhn-
Tucker conditions we arrive into the requirement that if
{K∗

r } is an optimal set of values, then ifK∗
r 6= 0, we

have:

nm(r)γ f −µ
f nm(r)

bw
r

g′(K∗
r )



+µ
∂

∂Kr

(
1

θL({K∗
k}k∈K m

)
+ γ

)−1

= 0, (44)

and the constantµ is such that the set of{K∗
r } obeys

the constraint (43) with equality. Assuming thatnm(r)
for eachr is large enough, we can neglect the derivative
associated with the last term in (44). Then we arrive into
a simple requirement forK∗

r 6= 0

g′(K∗
r )

bw
r

=−ν , (45)

where the constantν is such that is such that the set of
{K∗

r } obeys the constraint (43) with equality. Elaborating
on g′r(K) we get:

g′(Kr) =
(Z ∞

K
(x−Kr)p(x)dx

)′
=−P(ηr > K) ,

wherep(·) denotes the pdf of the normal random variable
with expectation and variance equal toE

[
Mh

k

]
. Combin-

ing this with (45) yields Proposition 4.
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